Multiscale Modeling of a Quantum Dot Heterostructure
نویسندگان
چکیده
A multiscale approach was adopted for the calculation of confined states in self-assembled semiconductor quantum dots (QDs). While results close to experimental data have been obtained with a combination of atomistic strain and tight-binding (TB) electronic structure description for the confined quantum states in the QD, the TB calculation requires substantial computational resources. To alleviate this problem an integrated approach was adopted to compute the energy states from a continuum 8-band k.p Hamiltonian under the influence of an atomistic strain field. Such multiscale simulations yield a roughly six-fold faster simulation. Atomic-resolution strain is added to the k.p Hamiltonian through interpolation onto a coarser continuum grid. Sufficient numerical accuracy is obtained by the multiscale approach. Optical transition wavelengths are within 7% of the corresponding TB results with a proper splitting of p-type sub-bands. The systematically lower emission wavelengths in k.p are attributable to an underestimation of the coupling between the conduction and valence bands.
منابع مشابه
A Proposal for a New Method of Modeling of the Quantum Dot Semiconductor Optical Amplifiers
With the advancement of nanoscale semiconductor technology,semiconductor optical amplifiers are used to amplify and process all-optical signals. Inthis paper, with the aim of calculating the gain of quantum dot semiconductor opticalamplifier (QD-SOA), two groups of rate equations and the optical signal propagatingequation are used in the active layer of the device. For t...
متن کاملModeling of High Temperature GaN Quantum Dot Infrared Photodetectors
In this paper, we present calculations for different parameters of quantum dot infrared photodetectors. We considered a structure which includes quantum dots with large conduction-band-offset materials (GaN/AlGaN). Single band effective mass approximation has been applied in order to calculate the electronic structure. Throughout the modeling, we tried to consider the limiting factors which dec...
متن کاملQuantum current modeling in nano-transistors with a quantum dot
Carbon quantum dots (CQDs) serve as a new class of ‘zero dimensional’ nanomaterial’s in thecarbon class with sizes below 10 nm. As light emitting nanocrystals, QDs are assembled from semiconductormaterials, from the elements in the periodic groups of II-VI, III-V or IV-VI, mainly thanks to impacts of quantum confinement QDs have unique optical properties such as brighter, highly pho...
متن کاملFault-tolerant adder design in quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...
متن کاملRoom temperature midinfrared electroluminescence from InAs quantum dots
We demonstrate room temperature midinfrared electroluminescence from intersublevel transitions in self-assembled InAs quantum dots. The dots are grown in GaAs/AlGaAs heterostructures designed to maximize current injection into dot excited states while preferentially removing electrons from the ground states. As such, these devices resemble quantum cascade lasers. However, rigorous modeling of c...
متن کامل